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Scaling anomalies in the coarsening dynamics of fractal viscous fingering patterns

Massimo Contt, Azi Lipshtat? and Baruch Meersén
IDipartimento di Matematica e Fisica, Universiti Camerino, and Istituto Nazionale di Fisica della Materia, 62032 Camerino, ltaly
2Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel
(Received 25 July 2003; published 24 March 2004

We analyze a recent experiment of Shaebral. (2003 on the coarsening, due to surface tension, of fractal
viscous fingering patternéVFPg grown in a radial Hele-Shaw cell. We argue that an unforced Hele-Shaw
model, a natural model for that experiment, belongs to the same universality class asBnoidphase
ordering. Two series of numerical simulations with mo&ehre performed, with the FVFPs grown in the
experiment and with diffusion limited aggregates as the initial conditions. We observed Lifshitz-Slyozov
scalingt*® at intermediate distances and slow convergence to this scaling at small distances. Dynamic scale
invariance breaks down at large distances.
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Coarsening is an important paradigm of emergence of ordependence of either the slope of the Porod-law pa@(o)
der from disorder. It has been extensively studied in two{11-13 or the cluster perimetdrl0,11,13, a power law in
phase systems quenched from a disordered state into a regitime was reportedt. ; ~t%2% %23 Another length scale, de-
of phase coexistendd—3]. In another class of systems, dis- termined from a kneelike structure @(r) at moderate dis-
ordered configurations are generated by an instability ofances, behaves like,~t%3%%-32[13]. While L,(t) can be
growth in combination with noise, and they often exhibit jdentified as Lifshitz-Slyozov length scatet'® [13], the
long-range correlations and fractal geomdy. Examples length scalel(t) looks unusual.
include fractal clusters developing in the process of solidifi- Strikingly similar results were recently obtained in experi-
cation from an undercooled liquigb], fractal clusters on & ment on the coarsening dynamics ofiifferentsystem: radi-
substrate grown by depositi¢6], and fractal viscous finger- ally grown FVFPs in a Hele-Shaw celll4]. The frozen
ing patterndFVFPS formed by the Saffman-Taylor instabil- - i ctire at large distances, observed in Ref], clearly

ity in the radial Hele-Shaw ce[b]. When the driving stops, indicates breakdown of DSI. Furthermore, two different

the fractal clusters coarsen by surface tension, and the C0qlgme-dependent length scales, with apparent dynamic expo-
ening dynamics provide a valuable characterization of these o
systems. nents 0.22 and 0.31, are obsery&d]. Why is this system so

An important simplifying factor in the analysis of coars- similar to the diffusion-controlled system? Where does the

ening dynamics islynamic scale invariancéSI): the pres- exponent 0.26 0.23 come from? These questions are ad-
ence of asingle time-dependent length scalét), so that a dressed in the present work. We first suggest an unforced

normalized pair correlation functio@(r,t) depends, at long Hele-Shaw model and discuss its properties. A scaling argu-
times, only onr/L(t). The coarsening length scalét) of- me.nt indicates that this model belongs to the same univer-
ten exhibits a power law in timgg]. For systems with short- sality class as the so-called mod&lthe standard model of
range correlations there is a lot of evidence, from experithe diffusion-controlled phase separation in two-phase sys-
ments and numerical simulations, in favor of D8l. For  tems[3]. Assuming universality, we performed a series of
systems with long-range correlations the situation is moréwumerical simulations with modeB, where the FVFPs,
complicated. In the case of a nonconserved order parametgrown in experiment of Sharoet al. [14], are used as the
DSI was established in particle simulations following ainitial conditions for the minority phase. Then we report ad-
quench fromT=T, to T=0 [7]. Implications of mass con- ditional simulations of fractal coarsening, with DLAgiffu-
servation in DSI were addressed more recently, in the contexgion limited aggregatg¢ss the initial conditions. These two
of coarsening of fractal clusters. Most remarkable of them iseries of simulations show Lifshitz-Slyozov scalittf® at

the predicted decrease of the cluster radius with {i@jeAs  intermediate distances. Breakdown of dynamic scale invari-
of present, only the systems where the conservation law iance at large distances is confirmed. However, the existence
imposedglobally, rather than locally, have been found to of an anomalous power law in,(t) is disproved.

indeed show this effedi9]. On the contrary, the “frozen” A natural description of coarsening of FVFPs is provided
structure of fractal clusters at large distances, observed im terms of an unforced Hele-ShaiwHS) flow. Consider a
simulations oflocally conserveddiffusion-controlled frac-  Hele-Shaw flow[15] and assume that the driving fluifbr

tal coarsening10-13, implies breakdown of DSI in these example, air has negligible viscosity, so that the pressure
systems[11,13. The frozen structure is due to Laplacian inside it is spatially uniform. When the plate spacibgs

screening of transport at large distan¢#s]. very small, the flow is effectively two dimensional, and the
An additional scaling anomaly, observed in the numericalvelocity of the viscous fluidfor example, oil is v(r,t)=
simulations of diffusion-controlled fractal coarsenifitD—  —(b%12u)Vp(r,t), wherep is the pressure ang is the

13], was the presence divo apparently different dynamic dynamic viscosity of the driven fluid. As the fluids are im-
length scales. For one of them, determined from the timemiscible, the interface speed is
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b? where potentiafb (r,t) is a harmonic function in each of the
Unz—mvnﬂ (1) two phasesin and out The boundary conditions ar®|,
=(y2/3)K andV,®|=0.
where indexn denotes the components of the vectors normal How are these two problems related? To begin with, the
to the interface, and the gradient is evaluated at the respegharp-interface limit of modeB has the same properti€s
tive points of the interface.. Assuming incompressibility of and (i) as the UHS modég]21], so each of the two models
the driven fluid,V-v=0, one arrives at Laplace’s equation describes interface-shortening dynamics under area conser-
for the pressure: vation. The models do differ from each other considerably in
the final outcomes of the coarsening dynamics. For a steady
VZp=0. (2)  state solution of the UHS model one has simpky const.
Therefore, possible stationary shapes of domains of the driv-
The pressure jump across the interfacglig] ing fluid in the UHS model arene or morecircular bubbles
23 of arbitrary radii. On the contrary, in moddé, ® =const
14 3.8( "“’n) " ZU,C 3) cannot be a steady state solution in the presence of more than
o 4 one bubble, because it cannot obey all the boundary condi-
tions on the multiple interfaces. Therefore, a generic final
where o is surface tension anfl is the curvature of the state here is always single circular bubble. In modeB
interface. At the coarsening stage the interface speed is vepyipples compete for material via diffusion through the ma-

glected. The first term does not depend on the coordinates, $@,q ripening[2,3]) is absent in the UHS model.

o

Apb

one arrives at a Gibbs-Thomson relation This difference between the two models becomes crucial
after the driving fluid breaks up into multiple bubbles. Be-

Ap= ZO'IC. (4) fore it happens, the two models can be expected to behave
4 similarly. A simple argument for this follows from scaling

analysis. Consider coarsening of a domain of complex shape
To close this set of equations, one more condition is neede@nd assume for a moment DSI, which issiagle relevant
A natural condition to demand during tlggowth stage is @ length scald.=L(t). The pressure jump across the interface
constant-in-time driving pressufd7], or a constant areal can be estimated from E@4): Ap~o/L. Then, from Eq.
flow rate of the driving fluid. Each of these conditions as-(q) v, ~b20/(L?). On the other hand;,~L. This yields
sumes evacuation of the driven fluid at the external boundary coarsening law (t)~ (b2at/x) ¥, We checked that this
of the system. In the coarsening problem both the supply Ofstimate is in excellent agreement with the experimental re-
the driving fluid and evacuation of the driven fluid are sult [14] for L,(t), for two latest decades of time.
blocked. Therefore, the normal component of the velocity of 1o same power law*? is obtained in modeB [2,3].

the. driven fluid at the external boundaly should vanish, Therefore, if DSI holds, the two models belong to the same
which follows universality class. In reality, each of these two systems ex-
hibits breakdown of DSI at large distances when one deals
with fractal clusters at=0 [11-14. At intermediate dis-
tances, however, the classic exponenti¢/@oserved in both
systemq 13,14]. Therefore, we conjecture that, prior to ma-
rTor breakup, the two models belong to the same universality
class.

Based on this conjecture, we performed two series of
simulations with modeB [Eq. (6)]. Details of our numerical
procedure and diagnostics can be found in Rf$,13. In
the first series of simulations we used FVFPs grown in ex-
periment[14] as the initial conditions for the “minority
phase”u=1. The fractal dimension of these patterns, deter-
mined from the pair correlation function, is close to 1.71.
u 1 The (scaled system size was 10241024, with periodic
— + -V4(V2u+u—u®)=0. (6)  boundary conditions. Thescaled time range of the simula-
at 2 tions was G<t<3x10*. Figure 1 shows snapshots of the

simulated coarsening dynamics. The snapshots closely re-
At late times, the two-phase dynamics are describable by agemble those observed in experimgd]. Figure 2 presents

V.p|r=0. (5)

Equations(1), (2), (4), and(5) define a one-sided version of
the UHS model. Similar models have been used in the co
text of breakupgpinch-offg of bubbles, driven only by sur-
face tension[18,19. The UHS model has two important
properties{i) The total ared of the driving fluid is constant
and (ii) the total length of the interface is a nonincreasing
function of time[20].

Now let us compare the UHS model with modg| the
phase-field formulation of which is given by the Cahn-
Hilliard equation for the order paramete(r,t) [3]:

limit, the interface speed is at different times and the characteristic dynamic length
scales. The data are averaged over seven simulations with
v =E(—V BOULL Y, in) 7) different FVFPs.C(r,t) in a linear scale is shown in Fig.
"4 n n ' 2(a). At small distance<C goes down linearly withr (the
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FIG. 1. Snapshots of coarsening of FVFPs simulated with model FIG. 3. Snapshots of coarsening of DLA clusteB=(1.71),
B. The upper left figuret(=0) shows a FVFPQ=1.71) grown in  simulated with modeB, at scaled times=0 (upper lef), 1350
experiment[14]. The rest of the snapshots show the simulation(upper righ}, 26 591 (lower lef), and 18 (lower righ.
results at scaled times=290 (upper righ}, 3817 (lower left), and

30 000(lower righp. feature of Fig. Pb) becomes here a local minimum whose

. L position at different times yields a sharp estimatd_gft).
Porod law [3], and the inverse slope of this linear depen—.l_he frozen tail at the distances much larger that), but

dence yields the “coarsening length scale(t) depicted in . P
Fig. 2d). The log-log plots olC(r 1) [Fig. 2b)] indicate an z?llljrgluch smaller than the system size, implies breakdown
invariable fractal dimension of the cluster at large distances PoWer-Iaw fits of the data shown in Fig(d2 yield the
(up to the upper cutoff of the frachalln addition, Fig. 2b) following dynamic exponentsa,=0.24+0.01 for L ,~t
exhibits a kneelike feature. In the previous wilg] a simi- and a-— 0.30+ 0.01 for Lt lThe. sa_mé result fcl)a is
i i - ifahit7- 2= V.ol U, 2 . 1

lar kneelike feature served to identify Lifshitz-Slyozov obtained from a power-law fit of the cluster perimeter versus
length scalel »(t). He.re,.f(l)l_lowmg Sharoret al. [14], we time P(t)~t~“1, as expectedl3,9-11,13 While the value
subtracted .fronC(r,t) 't.s initial vaIueC(r,O), and followed of a, is very close to that obtained in earlier simulations of
the dynamics of the difference, see Figc)2 The kneelike model B [13] and experiment with the FVFPEL4],

’ 1

=0.24 is somewhat larger than the values 0.20-0.23 re-

9
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FIG. 2. The dynamics of the equal-time pair correlation function
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from simulations with modelB. The initial conditions are the
FVFPs grown in experimertl4]. The time moments are=0 (a
and b only, 1052, 2950, 13846, and>310*. The dashed line
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FIG. 4.C(r,t) att=0, 1026, 10521, and 2@a), L,(t) (b), and
P(t) (c). The dashed line describes a power tawt® and is shown
here to guide the eye. The effective time-dependent expanens

describes a power lawt®and is shown here to guide the eye. See P is shown in(d). Linear extrapolation t®=0 (dashed lingyields
text for further details.

a= 0.34.
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ported earlier for these two systerflf0—14. Also, notice- in Fig. 4(d) versus the perimeteP itself. An asymptotic
able in Fig. 2d) is curvature of the log-log plot ok (t). value of —a(t) is obtained by linear extrapolation—
These observations put forward a question about the trughat is,P— 0. This procedure yielda,;=0.34, very close to
asymptotic value of exponent;. 1/3.

~ To address this question, we performed a series of larger Qverall, our simulations with modé are in remarkable
simulations, extending the time interval urtti-10° (which  agreement with experiment on the Hele-Shaw coarsening of
is 20 times longer than the first phase-field simulations ofryFps[14]. Breakdown of DSI at large distances and the
this system[11]). The initial conditions for the minority | jtshitz-Slyozov scalingt™® at intermediate distances are

phase were DLA clusters, “reinforced” by an addition of £y established. Our simulations show, however, that the
peripheral sites. The clusters occupied the 202824 box;  «,nusual” dynamic exponent 0.20—0.23 is a transient on the

they had a larger fractal range than the FVFPs grown inyay 14 1/3. This finding explains the apparent independence
experimen{14]. Figure 3 shows snapshots of the simulatedys the ynusual exponent on the fractal dimension of the clus-
coarsening dynamics. Figurdaj presentsC(r,t) averaged (or ohserved in Ref13]. In view of the conjectured univer-
over Six Q|ﬁ?rent reaI_|za,t,|ons of DLA. Again, following gajity we expect that the same kind of behavior will be ob-
some initial “evaporation” of the minority phasewhich  gerved in a larger-scale experiment on the coarsening of

happens at an earlier stage of the Cahn-Hilliard dynamics pypps, and in direct simulations with the unforced Hele-
the tail of C(r) is frozen until very long times. The dynamic ghaw model.

length scalel,(t) is shown in Fig. 4b); a power-law fit at

long times yieldsa=0.31-0.32 which is close to 1/3, as  We are grateful to Eran Sharon and his colleagues for
expected. The cluster perimeter versus time is shown in Figoroviding images of FVFPs, which were used in our simula-
4(c). It can be seen tha(t) has not approached yet a power tions, and for useful discussions. We thank Avner Peleg and
law. Therefore, we followed Husg2] and introduced an Boris Zaltzman for advice. The work was supported by the
effective time-dependengéxponent— a4 (t) which is shown Israel Science FoundatidiGrant No. 180/02
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