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Scaling anomalies in the coarsening dynamics of fractal viscous fingering patterns
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We analyze a recent experiment of Sharonet al. ~2003! on the coarsening, due to surface tension, of fractal
viscous fingering patterns~FVFPs! grown in a radial Hele-Shaw cell. We argue that an unforced Hele-Shaw
model, a natural model for that experiment, belongs to the same universality class as modelB of phase
ordering. Two series of numerical simulations with modelB are performed, with the FVFPs grown in the
experiment and with diffusion limited aggregates as the initial conditions. We observed Lifshitz-Slyozov
scalingt1/3 at intermediate distances and slow convergence to this scaling at small distances. Dynamic scale
invariance breaks down at large distances.
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Coarsening is an important paradigm of emergence of
der from disorder. It has been extensively studied in tw
phase systems quenched from a disordered state into a re
of phase coexistence@1–3#. In another class of systems, di
ordered configurations are generated by an instability
growth in combination with noise, and they often exhib
long-range correlations and fractal geometry@4#. Examples
include fractal clusters developing in the process of solid
cation from an undercooled liquid@5#, fractal clusters on a
substrate grown by deposition@6#, and fractal viscous finger
ing patterns~FVFPs! formed by the Saffman-Taylor instabi
ity in the radial Hele-Shaw cell@5#. When the driving stops
the fractal clusters coarsen by surface tension, and the co
ening dynamics provide a valuable characterization of th
systems.

An important simplifying factor in the analysis of coar
ening dynamics isdynamic scale invariance~DSI!: the pres-
ence of asingle, time-dependent length scaleL(t), so that a
normalized pair correlation functionC(r ,t) depends, at long
times, only onr /L(t). The coarsening length scaleL(t) of-
ten exhibits a power law in time@3#. For systems with short
range correlations there is a lot of evidence, from exp
ments and numerical simulations, in favor of DSI@3#. For
systems with long-range correlations the situation is m
complicated. In the case of a nonconserved order param
DSI was established in particle simulations following
quench fromT5Tc to T50 @7#. Implications of mass con
servation in DSI were addressed more recently, in the con
of coarsening of fractal clusters. Most remarkable of them
the predicted decrease of the cluster radius with time@8#. As
of present, only the systems where the conservation law
imposedglobally, rather than locally, have been found
indeed show this effect@9#. On the contrary, the ‘‘frozen’’
structure of fractal clusters at large distances, observe
simulations oflocally conserved~diffusion-controlled! frac-
tal coarsening@10–13#, implies breakdown of DSI in thes
systems@11,13#. The frozen structure is due to Laplacia
screening of transport at large distances@13#.

An additional scaling anomaly, observed in the numeri
simulations of diffusion-controlled fractal coarsening@10–
13#, was the presence oftwo apparently different dynamic
length scales. For one of them, determined from the t
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dependence of either the slope of the Porod-law part ofC(r )
@11–13# or the cluster perimeter@10,11,13#, a power law in
time was reported:L1;t0.2020.23. Another length scale, de
termined from a kneelike structure inC(r ) at moderate dis-
tances, behaves likeL2;t0.3020.32 @13#. While L2(t) can be
identified as Lifshitz-Slyozov length scale;t1/3 @13#, the
length scaleL1(t) looks unusual.

Strikingly similar results were recently obtained in expe
ment on the coarsening dynamics of adifferentsystem: radi-
ally grown FVFPs in a Hele-Shaw cell@14#. The frozen
structure at large distances, observed in Ref.@14#, clearly
indicates breakdown of DSI. Furthermore, two differe
time-dependent length scales, with apparent dynamic ex
nents 0.22 and 0.31, are observed@14#. Why is this system so
similar to the diffusion-controlled system? Where does
exponent 0.2020.23 come from? These questions are a
dressed in the present work. We first suggest an unfor
Hele-Shaw model and discuss its properties. A scaling a
ment indicates that this model belongs to the same uni
sality class as the so-called modelB, the standard model o
the diffusion-controlled phase separation in two-phase s
tems @3#. Assuming universality, we performed a series
numerical simulations with modelB, where the FVFPs,
grown in experiment of Sharonet al. @14#, are used as the
initial conditions for the minority phase. Then we report a
ditional simulations of fractal coarsening, with DLAs~diffu-
sion limited aggregates! as the initial conditions. These tw
series of simulations show Lifshitz-Slyozov scalingt1/3 at
intermediate distances. Breakdown of dynamic scale inv
ance at large distances is confirmed. However, the existe
of an anomalous power law inL1(t) is disproved.

A natural description of coarsening of FVFPs is provid
in terms of an unforced Hele-Shaw~UHS! flow. Consider a
Hele-Shaw flow@15# and assume that the driving fluid~for
example, air! has negligible viscosity, so that the pressu
inside it is spatially uniform. When the plate spacingb is
very small, the flow is effectively two dimensional, and th
velocity of the viscous fluid~for example, oil! is v(r ,t)5
2(b2/12m)“p(r ,t), wherep is the pressure andm is the
dynamic viscosity of the driven fluid. As the fluids are im
miscible, the interface speed is
©2004 The American Physical Society06-1
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vn52
b2

12m
“np, ~1!

where indexn denotes the components of the vectors norm
to the interface, and the gradient is evaluated at the res
tive points of the interfaceg. Assuming incompressibility of
the driven fluid,“•v50, one arrives at Laplace’s equatio
for the pressure:

¹2p50. ~2!

The pressure jump across the interface is@16#

Dp5
s

b F113.8S mvn

s D 2/3G1
p

4
sK, ~3!

where s is surface tension andK is the curvature of the
interface. At the coarsening stage the interface speed is
small, so the second term in the square brackets can be
glected. The first term does not depend on the coordinate
one arrives at a Gibbs-Thomson relation

Dp5
p

4
sK. ~4!

To close this set of equations, one more condition is nee
A natural condition to demand during thegrowth stage is a
constant-in-time driving pressure@17#, or a constant area
flow rate of the driving fluid. Each of these conditions a
sumes evacuation of the driven fluid at the external bound
of the system. In the coarsening problem both the supply
the driving fluid and evacuation of the driven fluid a
blocked. Therefore, the normal component of the velocity
the driven fluid at the external boundaryG should vanish,
which follows

“npuG50. ~5!

Equations~1!, ~2!, ~4!, and~5! define a one-sided version o
the UHS model. Similar models have been used in the c
text of breakups~pinch-offs! of bubbles, driven only by sur
face tension@18,19#. The UHS model has two importan
properties:~i! The total areaA of the driving fluid is constant
and ~ii ! the total length of the interface is a nonincreasi
function of time@20#.

Now let us compare the UHS model with modelB, the
phase-field formulation of which is given by the Cah
Hilliard equation for the order parameteru(r ,t) @3#:

]u

]t
1

1

2
¹2~¹2u1u2u3!50. ~6!

At late times, the two-phase dynamics are describable b
asymptotic sharp-interface theory@21#. In the sharp-interface
limit, the interface speed is

vn5
1

4
~2¹nFout1¹nF in!, ~7!
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where potentialF(r ,t) is a harmonic function in each of th
two phasesin and out. The boundary conditions areFug
5(A2/3)K and¹nFuG50.

How are these two problems related? To begin with,
sharp-interface limit of modelB has the same properties~i!
and ~ii ! as the UHS model@21#, so each of the two model
describes interface-shortening dynamics under area con
vation. The models do differ from each other considerably
the final outcomes of the coarsening dynamics. For a ste
state solution of the UHS model one has simplyp5const.
Therefore, possible stationary shapes of domains of the d
ing fluid in the UHS model areone or morecircular bubbles
of arbitrary radii. On the contrary, in modelB, F5const
cannot be a steady state solution in the presence of more
one bubble, because it cannot obey all the boundary co
tions on the multiple interfaces. Therefore, a generic fi
state here is always asingle circular bubble. In modelB
bubbles compete for material via diffusion through the m
jority phase. Obviously, this competition mechanism~Ost-
wald ripening@2,3#! is absent in the UHS model.

This difference between the two models becomes cru
after the driving fluid breaks up into multiple bubbles. B
fore it happens, the two models can be expected to beh
similarly. A simple argument for this follows from scalin
analysis. Consider coarsening of a domain of complex sh
and assume for a moment DSI, which is asingle relevant
length scaleL5L(t). The pressure jump across the interfa
can be estimated from Eq.~4!: Dp;s/L. Then, from Eq.
~1!, vn;b2s/(mL2). On the other hand,vn;L̇. This yields
a coarsening lawL(t);(b2st/m)1/3. We checked that this
estimate is in excellent agreement with the experimental
sult @14# for L2(t), for two latest decades of time.

The same power lawt1/3 is obtained in modelB @2,3#.
Therefore, if DSI holds, the two models belong to the sa
universality class. In reality, each of these two systems
hibits breakdown of DSI at large distances when one de
with fractal clusters att50 @11–14#. At intermediate dis-
tances, however, the classic exponent 1/3is observed in both
systems@13,14#. Therefore, we conjecture that, prior to m
jor breakup, the two models belong to the same universa
class.

Based on this conjecture, we performed two series
simulations with modelB @Eq. ~6!#. Details of our numerical
procedure and diagnostics can be found in Refs.@11,13#. In
the first series of simulations we used FVFPs grown in
periment @14# as the initial conditions for the ‘‘minority
phase’’u51. The fractal dimension of these patterns, det
mined from the pair correlation function, is close to 1.7
The ~scaled! system size was 102431024, with periodic
boundary conditions. The~scaled! time range of the simula-
tions was 0,t,33104. Figure 1 shows snapshots of th
simulated coarsening dynamics. The snapshots closely
semble those observed in experiment@14#. Figure 2 presents
the ~normalized! equal-time pair correlation functionC(r ,t)
at different times and the characteristic dynamic len
scales. The data are averaged over seven simulations
different FVFPs.C(r ,t) in a linear scale is shown in Fig
2~a!. At small distancesC goes down linearly withr ~the
6-2
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Porod law! @3#, and the inverse slope of this linear depe
dence yields the ‘‘coarsening length scale’’L1(t) depicted in
Fig. 2~d!. The log-log plots ofC(r ,t) @Fig. 2~b!# indicate an
invariable fractal dimension of the cluster at large distan
~up to the upper cutoff of the fractal!. In addition, Fig. 2~b!
exhibits a kneelike feature. In the previous work@13# a simi-
lar kneelike feature served to identify Lifshitz-Slyozo
length scaleL2(t). Here, following Sharonet al. @14#, we
subtracted fromC(r ,t) its initial valueC(r ,0), and followed
the dynamics of the difference, see Fig. 2~c!. The kneelike

FIG. 1. Snapshots of coarsening of FVFPs simulated with mo
B. The upper left figure (t50) shows a FVFP (D.1.71) grown in
experiment@14#. The rest of the snapshots show the simulat
results at scaled timest5290 ~upper right!, 3817~lower left!, and
30 000~lower right!.

FIG. 2. The dynamics of the equal-time pair correlation funct
C(r ,t) ~a–c!, and the dynamic length scalesL1(t) and L2(t) ~d!
from simulations with modelB. The initial conditions are the
FVFPs grown in experiment@14#. The time moments aret50 ~a
and b only!, 1052, 2950, 13 846, and 33104. The dashed line
describes a power law;t1/3 and is shown here to guide the eye. S
text for further details.
03140
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feature of Fig. 2~b! becomes here a local minimum whos
position at different times yields a sharp estimate ofL2(t).
The frozen tail at the distances much larger thanL2(t), but
still much smaller than the system size, implies breakdo
of DSI.

Power-law fits of the data shown in Fig. 2~d! yield the
following dynamic exponents:a150.2460.01 for L1;ta1

and a250.3060.01 for L2;ta2. The same result fora1 is
obtained from a power-law fit of the cluster perimeter vers
time P(t);t2a1, as expected@3,9–11,13#. While the value
of a2 is very close to that obtained in earlier simulations
model B @13# and experiment with the FVFPs@14#, a1
50.24 is somewhat larger than the values 0.20–0.23

el FIG. 3. Snapshots of coarsening of DLA clusters (D.1.71),
simulated with modelB, at scaled timest50 ~upper left!, 1350
~upper right!, 26 591~lower left!, and 105 ~lower right!.

FIG. 4. C(r ,t) at t50, 1026, 10 521, and 105 ~a!, L2(t) ~b!, and
P(t) ~c!. The dashed line describes a power law;t1/3 and is shown
here to guide the eye. The effective time-dependent exponenta1 vs
P is shown in~d!. Linear extrapolation toP50 ~dashed line! yields
a150.34.
6-3
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ported earlier for these two systems@10–14#. Also, notice-
able in Fig. 2~d! is curvature of the log-log plot ofL1(t).
These observations put forward a question about the
asymptotic value of exponenta1.

To address this question, we performed a series of la
simulations, extending the time interval untilt5105 ~which
is 20 times longer than the first phase-field simulations
this system@11#!. The initial conditions for the minority
phase were DLA clusters, ‘‘reinforced’’ by an addition o
peripheral sites. The clusters occupied the 102431024 box;
they had a larger fractal range than the FVFPs grown
experiment@14#. Figure 3 shows snapshots of the simulat
coarsening dynamics. Figure 4~a! presentsC(r ,t) averaged
over six different realizations of DLA. Again, following
some initial ‘‘evaporation’’ of the minority phase~which
happens at an earlier stage of the Cahn-Hilliard dynami!,
the tail ofC(r ) is frozen until very long times. The dynami
length scaleL2(t) is shown in Fig. 4~b!; a power-law fit at
long times yieldsa50.31–0.32 which is close to 1/3, a
expected. The cluster perimeter versus time is shown in
4~c!. It can be seen thatP(t) has not approached yet a pow
law. Therefore, we followed Huse@22# and introduced an
effective time-dependentexponent2a1(t) which is shown
.
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in Fig. 4~d! versus the perimeterP itself. An asymptotic
value of 2a1(t) is obtained by linear extrapolationt→`,
that is,P→0. This procedure yieldsa150.34, very close to
1/3.

Overall, our simulations with modelB are in remarkable
agreement with experiment on the Hele-Shaw coarsenin
FVFPs @14#. Breakdown of DSI at large distances and t
Lifshitz-Slyozov scalingt1/3 at intermediate distances ar
firmly established. Our simulations show, however, that
‘‘unusual’’ dynamic exponent 0.20–0.23 is a transient on
way to 1/3. This finding explains the apparent independe
of the unusual exponent on the fractal dimension of the c
ter, observed in Ref.@13#. In view of the conjectured univer
sality, we expect that the same kind of behavior will be o
served in a larger-scale experiment on the coarsening
FVFPs, and in direct simulations with the unforced He
Shaw model.

We are grateful to Eran Sharon and his colleagues
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tions, and for useful discussions. We thank Avner Peleg
Boris Zaltzman for advice. The work was supported by t
Israel Science Foundation~Grant No. 180/02!.
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